# Transferring a Small Molecule Quant Method to Skyline

J. Will Thompson

Duke Proteomics and Metabolomics Shared Resource

**Duke School of Medicine** 

Durham, NC

Transfer of a Quantitative Small Molecule Quant Method to Data Analysis in Skyline

- Targeted Quantification based on TQ-MS, out of crashed plasma
- Starting from a method you may already be running (e.g. PK)

In the analysis of this dataset you will learn

- Insertion of simple set of known transitions
- Data Analysis and peak integration for small molecules
- Small Molecule Quantification workflow in Skyline

# Experimental Layout





double blank
 PBS 'zero' samples
 Calibration curve
 Low, Mid, High QC Samples
 Serum SPQC
 Study Samples

Serum Sample Injection Sequence

double blank ()PBS 'zero' samples Calibration curve Low to High Low, Mid, High QC Samples 3 4765 Serum SPQC Study Samples 1 to 38 Low, Mid, High QC Samples  $\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc]$ 3 4765 Serum SPQC Study Samples 39 to 76 3 4765 Serum SPQC High, Mid, Low QC Samples Calibration Curve Low to High

## Create a Transition List From Scratch

- Small transition lists can be typed into Skyline Directly. Edit/Insert/Transition List.
- Select "Small Molecules". Choose fields and enter data as below.

| 💁 Ins  | ert                      |                   |               |                  |                     |                |                   |                 |                                 | ×                             |
|--------|--------------------------|-------------------|---------------|------------------|---------------------|----------------|-------------------|-----------------|---------------------------------|-------------------------------|
| Transi | tion List                |                   |               |                  |                     |                |                   |                 |                                 |                               |
|        | Molecule<br>List<br>Name | Precursor<br>Name | Label<br>Type | Precursor<br>m/z | Precursor<br>Charge | Product<br>m/z | Product<br>Charge | Cone<br>Voltage | Explicit<br>Collision<br>Energy | Explicit<br>Retention<br>Time |
|        | DrugX                    | Drug              | light         | 283.04           | 1                   | 129.96         | 1                 | 26              | 16                              | 2.7                           |
| 1      | DrugX                    | IS                | heavy         | 286.04           | 1                   | 133.00         | 1                 | 26              | 16                              | 2.7                           |
|        |                          |                   |               |                  |                     |                |                   |                 |                                 |                               |
|        |                          |                   |               |                  |                     |                |                   |                 |                                 |                               |
|        |                          |                   |               |                  |                     |                |                   |                 |                                 |                               |
|        |                          |                   |               |                  |                     |                |                   |                 |                                 |                               |

# Alternative, define light/heavy within one molecule type.

| â, I | nsert                    |                        |                     |                  |                     |                |                   |                        |                                 | <b>X</b>                      |
|------|--------------------------|------------------------|---------------------|------------------|---------------------|----------------|-------------------|------------------------|---------------------------------|-------------------------------|
| Tra  | nsition List             |                        |                     |                  |                     |                |                   |                        |                                 |                               |
|      | Molecule<br>List<br>Name | Precursor<br>Name      | Label<br>Type       | Precursor<br>m/z | Precursor<br>Charge | Product<br>m/z | Product<br>Charge | Cone<br>Voltage        | Explicit<br>Collision<br>Energy | Explicit<br>Retention<br>Time |
|      | DrugX                    | Drug                   | light               | 283.04           | 1                   | 129.96         | 1                 | 26                     | 16                              | 2.7                           |
| 1    | DrugX                    | Drug                   | heavy               | 286.04           | 1                   | 133.00         | 1                 | 26                     | 16                              | 2.7                           |
|      |                          |                        |                     |                  |                     |                |                   |                        |                                 |                               |
|      |                          |                        |                     |                  |                     |                |                   |                        |                                 |                               |
| H    |                          |                        |                     |                  | _                   |                |                   |                        |                                 |                               |
| 0    | Peptides @               | Small <u>m</u> olecule | s Col <u>u</u> mns. | <u>H</u> elp     | ]                   |                | Che               | eck for <u>E</u> rrors | Insert                          | <u>C</u> ancel                |

Modify as shown, then click "insert".

### Method Development and CE Optimization for Small Molecules in Skyline

### Development of a Method for Selected Energy Metabolites on LC-MS/MS (Triple Quad)

J. Will Thompson

Duke Proteomics and Metabolomics Shared Resource

Duke University School of Medicine

Durham, NC

# Multiplexed Method Optimization of Small Molecules in Skyline

- Targeted Quantification Workflows based on TQMS
- Starting from a Publication including a transition list of putative molecules of interest, then using Skyline to perform multiplexed optimization of CE and RT scheduling.

In the analysis of this dataset you will learn:

- Building a Skyline method from a simple transition list from a publication
- Scheduling RT and optimizing collision energies (CE) (different instrument platform)

### A little work in Excel to start...

#### Published Transition List...

#### Open "EnergyMet\_TransitionList.xlsx"

| Functional Category   | Metabolite                 | KEGG id | Q1-12C | Q3-12C | Q1-13C | Q3-13C | CE | Mode     |
|-----------------------|----------------------------|---------|--------|--------|--------|--------|----|----------|
| Central Metabolism    | a-Ketoglutaric acid        | C00026  | 145    | 101    | 150    | 105    | 5  | Negative |
| Central Metabolism    | Phosphoenolpyruvate        | C00074  | 167    | 79     | 170    | 79     | 29 | Negative |
| Central Metabolism    | Dihydroxyacetone-P         | C00111  | 169    | 79     | 172    | 79     | 29 | Negative |
| Central Metabolism    | Pentose-P                  | C00199  | 229    | 79     | 234    | 79     | 45 | Negative |
| Central Metabolism    | Hexose-P                   | C01094  | 259    | 79     | 265    | 79     | 53 | Negative |
| Central Metabolism    | Seduheptulose 7-P          | C05382  | 289    | 97     | 296    | 97     | 17 | Negative |
| Central Metabolism    | Fructose-1,6-Bisphosphate  | C00354  | 339    | 241    | 345    | 247    | 16 | Negative |
| Central Metabolism    | UDP-N-acetyl-D-Glucosamine | C00043  | 606    | 385    | 623    | 394    | 29 | Negative |
| Central Metabolism    | Acetyl-CoA                 | C00024  | 808    | 408    | 831    | 418    | 37 | Negative |
| Cofactor metabolism   | NAD                        | C00003  | 662    | 540    | 683    | 555    | 20 | Negative |
| Cofactor metabolism   | NADP                       | C00006  | 742    | 620    | 763    | 635    | 20 | Negative |
| Nucleotide metabolisr | Orotate                    | C00295  | 155    | 111    | 160    | 115    | 9  | Negative |
| Nucleotide metabolisr | Dihydroorotate             | C00337  | 157    | 113    | 162    | 117    | 5  | Negative |
| Nucleotide metabolisr | UDP                        | C00015  | 403    | 79     | 412    | 79     | 69 | Negative |
| Amino acid metabolisi | GABA                       | C00334  | 104    | 69     | 108    | 73     | 37 | Positive |
| Amino acid metabolisi | Phenylpyruvic acid         | C00166  | 165    | 95     | 174    | 101    | 13 | Positive |
| Amino acid metabolisi | Diaminopimelic acid        | C00666  | 191    | 128    | 198    | 134    | 13 | Positive |
| Central Metabolism    | D-Alanyl-Alanine           | C00993  | 161    | 44     | 167    | 46     | 13 | Positive |
| Cofactor metabolism   | D-Pantothenic acid         | C00864  | 220    | 90     | 229    | 93     | 13 | Positive |
| Cofactor metabolism   | Oxidized glutathione       | C00127  | 613    | 355    | 633    | 365    | 25 | Positive |
| Nucleotide metabolisr | Hypoxanthine               | C00262  | 137    | 55     | 142    | 57     | 37 | Positive |
| Nucleotide metabolisr | Guanine                    | C00242  | 152    | 110    | 157    | 114    | 21 | Positive |
| Nucleotide metabolisr | UMP                        | C00105  | 325    | 97     | 334    | 102    | 17 | Positive |
| Nucleotide metabolisr | CAMP                       | C00575  | 330    | 136    | 340    | 141    | 29 | Positive |
| Nucleotide metabolisr | AMP                        | C00020  | 348    | 136    | 358    | 141    | 21 | Positive |
| Nucleotide metabolisr | ADP                        | C00008  | 428    | 136    | 438    | 141    | 37 | Positive |
| Nucleotide metabolisr | UTP                        | C00075  | 485    | 97     | 494    | 102    | 21 | Positive |
| Nucleotide metabolisr | ATP                        | C00002  | 508    | 136    | 518    | 141    | 37 | Positive |

| A                     | D                           | L L        | U           | C           |            | 0          |            |                | ,            | N N         |
|-----------------------|-----------------------------|------------|-------------|-------------|------------|------------|------------|----------------|--------------|-------------|
| Molecule List Name    | Precursor Name              | Label Type | Precursor n | Precursor C | Product m/ | Product Ch | Cone Volta | Explicit Colli | Explicit Ret | ention Time |
| Amino acid metabolism | Diaminopimelic acid         | light      | 191         | 1           | 128        | 1          | 25         | 13             |              |             |
| Amino acid metabolism | Diaminopimelic acid         | heavy      | 198         | 1           | 134        | 1          | 25         | 13             |              |             |
| Amino acid metabolism | GABA                        | light      | 104         | 1           | 69         | 1          | 25         | 37             |              |             |
| Amino acid metabolism | GABA                        | heavy      | 108         | 1           | 73         | 1          | 25         | 37             |              |             |
| Amino acid metabolism | Phenylpyruvic acid          | light      | 165         | 1           | 95         | 1          | 25         | 13             |              |             |
| Amino acid metabolism | Phenylpyruvic acid          | heavy      | 174         | 1           | 101        | 1          | 25         | 13             |              |             |
| Central Metabolism    | Acetyl-CoA                  | light      | 808         | -1          | 408        | -1         | 25         | 37             |              |             |
| Central Metabolism    | Acetyl-CoA                  | heavy      | 831         | -1          | 418        | -1         | 25         | 37             |              |             |
| Central Metabolism    | a-Ketoglutaric acid         | light      | 145         | -1          | 101        | -1         | 25         | 5              |              |             |
| Central Metabolism    | a-Ketoglutaric acid         | heavy      | 150         | -1          | 105        | -1         | 25         | 5              |              |             |
| Central Metabolism    | D-Alanyl-Alanine            | light      | 161         | 1           | 44         | 1          | 25         | 13             |              |             |
| Central Metabolism    | D-Alanyl-Alanine            | heavy      | 167         | 1           | 46         | 1          | 25         | 13             |              |             |
| Central Metabolism    | Dihydroxyacetone-P          | light      | 169         | -1          | 79         | -1         | 25         | 29             |              |             |
| Central Metabolism    | Dihydroxyacetone-P          | heavy      | 172         | -1          | 79         | -1         | 25         | 29             |              |             |
| Central Metabolism    | Fructose-1,6-Bisphosphate   | light      | 339         | -1          | 241        | -1         | 25         | 16             |              |             |
| Central Metabolism    | Fructose-1,6-Bisphosphate   | heavy      | 345         | -1          | 247        | -1         | 25         | 16             |              |             |
| Central Metabolism    | Hexose-P                    | light      | 259         | -1          | 79         | -1         | 25         | 53             |              |             |
| Central Metabolism    | Hexose-P                    | heavy      | 265         | -1          | 79         | -1         | 25         | 53             |              |             |
| Central Metabolism    | Malate                      | light      | 133         | -1          | 115        | -1         | 25         | 9              |              |             |
| Central Metabolism    | Malate                      | heavy      | 137         | -1          | 119        | -1         | 25         | 9              |              |             |
| Central Metabolism    | Pentose-P                   | light      | 229         | -1          | 79         | -1         | 25         | 45             |              |             |
| Central Metabolism    | Pentose-P                   | heavy      | 234         | -1          | 79         | -1         | 25         | 45             |              |             |
| Central Metabolism    | Phosphoenolpyruvate         | light      | 167         | -1          | 79         | -1         | 25         | 29             |              |             |
| Central Metabolism    | Phosphoenolpyruvate         | heavy      | 170         | -1          | 79         | -1         | 25         | 29             |              |             |
| Central Metabolism    | Seduheptulose 7-P           | light      | 289         | -1          | 97         | -1         | 25         | 17             |              |             |
| Central Metabolism    | Seduheptulose 7-P           | heavy      | 296         | -1          | 97         | -1         | 25         | 17             |              |             |
| Central Metabolism    | Succinate                   | light      | 117         | -1          | 73         | -1         | 25         | 13             |              |             |
| Central Metabolism    | Succinate                   | heavy      | 121         | -1          | 76         | -1         | 25         | 13             |              |             |
| Central Metabolism    | LIDP-N-acetyl-D-Glucosamine | light      | 606         | -1          | 295        | -1         | 25         | 29             |              |             |

### High Speed HILIC method, based on Guder et al, <u>Anal Chem.</u> 2017 Feb 7;89(3):1624-1631.

X

min

?





| Column                               | Acquity BEH Amide |        |     |     |       |     | iHILIC-Fusion(P) |     |        |             |     |     |       | Zorbax |     |     | D. Hydride  |        |        |     |             |     |     |     |
|--------------------------------------|-------------------|--------|-----|-----|-------|-----|------------------|-----|--------|-------------|-----|-----|-------|--------|-----|-----|-------------|--------|--------|-----|-------------|-----|-----|-----|
| Dimension                            | 30 x 2            | 2.1 mr | n   |     |       |     |                  |     | 50 x 2 | 50 x 2.1 mm |     |     |       |        |     |     | 30 x 2.1 mm |        |        |     | 30 x 2.1 mm |     |     |     |
| Particle size                        | 1.7 μm            |        |     |     |       |     | 5 µm             |     |        |             |     |     |       | 1.8 µm |     |     |             | 2.2 μm |        |     |             |     |     |     |
| pН                                   | acidio            | 5      |     |     | basic |     |                  |     | acidio | 2           |     |     | basic |        |     |     | acidio      | 2      | acidic |     | cidic       |     |     |     |
| Run time (min)                       | 3.8               | 2.5    | 2   | 1.5 | 3.8   | 2.5 | 2                | 1.5 | 3.8    | 2.5         | 2   | 1.5 | 3.8   | 2.5    | 2   | 1.5 | 3.8         | 2.5    | 2      | 1.5 | 3.8         | 2.5 | 2   | 1.5 |
| Flow rate<br>(mL min <sup>-1</sup> ) | 0.2               | 0.3    | 0.4 | 0.5 | 0.2   | 0.3 | 0.4              | 0.5 | 0.2    | 0.3         | 0.4 | 0.5 | 0.2   | 0.3    | 0.4 | 0.5 | 0.2         | 0.3    | 0.4    | 0.5 | 0.2         | 0.3 | 0.4 | 0.5 |
| Median RSD                           | 10                | 9      | 12  | 19  | 11    | 11  | 11               | 11  | 10     | 12          | 12  | 14  | 8     | 10     | 10  | 14  | 11          | 11     | 12     | 13  | 12          | 10  | 13  | 14  |
| #of metabolites<br>RSD<20%           | 27                | 26     | 25  | 14  | 34    | 30  | 29               | 23  | 11     | 15          | 23  | 19  | 26    | 31     | 34  | 27  | 23          | 27     | 24     | 24  | 25          | 25  | 22  | 21  |

### Sample Used for Method Development: Credientialed E.Coli Lysate (Cambridge Isotope Laboratories)



#### CREDENTIALED E. COLI CELL EXTRACT KIT (SOLUTION)

The kit contents are as follows: 13C-labeled E. coli cell extract (100uL solution); unlabeled E. coli cell extract (100uL solution); Detailed user manual with "Credentialing R" software. Note: the cells are E. coli K12 strain MG1655 and were extracted using a variation of the method described in PMID; 25160088. MUST SHIP ON DRY ICE

| ltem Number      | MSK-CRED-KIT                                                                                             |
|------------------|----------------------------------------------------------------------------------------------------------|
| Chemical Formula |                                                                                                          |
| Unlabeled CAS#   |                                                                                                          |
| Labeled CAS#     |                                                                                                          |
| Molecular Weight |                                                                                                          |
| Chemical Purity  | 98%                                                                                                      |
|                  | Item Number<br>Chemical Formula<br>Unlabeled CAS#<br>Labeled CAS#<br>Molecular Weight<br>Chemical Purity |



Mahieu NG1, Huang X, Chen YJ, Patti GJ. <u>Credentialing features: a platform to benchmark and optimize untargeted metabolomic methods</u>. *Anal Chem.* **2014** Oct 7;86(19):9583-9. doi: 10.1021/ac503092d. Epub 2014 Sep 22.

# Start with a Blank Skyline Document. Save as "EnergyMet\_demo.sky".



### Document Setup for Instrument and Extraction Parameters (Xevo TQ-S triple quad, Waters) (Settings -> Transition Settings)

| Transition Settings                                                          | × | Transition Settings ×                                                          | Transition Settings                                                                                                                                                 | ( | Transition Settings                                                                                           | × |
|------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------|---|
| Prediction Filter Library Instrument Full-Scan                               |   | Prediction Filter Library Instrument Full-Scan                                 | Prediction Filter Library Instrument Full-Scan                                                                                                                      |   | Prediction Filter Library Instrument Full-Scan                                                                |   |
| Precursor mass: Pro <u>d</u> uct ion mass:<br>Monoisotopic ~ Monoisotopic ~  |   | Peptides Small Molecules Precursor <u>a</u> dducts: [M-H]                      | on match tolerance:                                                                                                                                                 |   | Min m/z:         Max m/z:           50         m/z         1500         m/z           Dynamic min product m/z |   |
| Collision energy:     Declustering potential:       Small Molecules     V    |   | Fragment adducts: [M+] Ion types:                                              | ✓ If a library spectrum is available, pick its most intense ions Pick:                                                                                              |   | Method match tolerance m/z:<br>0.055 m/z                                                                      |   |
| Optimization library:         Compensation voltage:           None         V |   | f1                                                                             | 3 product ions<br>minimum product ions                                                                                                                              |   | Eimware transition limit: Fimware inclusion limit:                                                            |   |
| ☐ <u>U</u> se optimization values when present                               |   |                                                                                | <ul> <li>From filtered ion charges and types</li> <li>From filtered ion charges and types plus filtered product ions</li> <li>From filtered product ions</li> </ul> |   | Min_time: Max time:                                                                                           |   |
|                                                                              |   | Precursor m/z exclusion window:<br>m/z<br>Auto-select all matching transitions |                                                                                                                                                                     |   |                                                                                                               |   |
| OK Cancel                                                                    |   | OK Cancel                                                                      | OK Cancel                                                                                                                                                           |   | OK Cancel                                                                                                     | 1 |

# Edit/Insert/Transition List

Use "columns" button to select columns to match "EnergyMet\_TransitionList.xlsx" Copy/paste transition list into table and click "check". If green, then click "insert".

|                              | Molecule List Name                            |         |                |           |           | â. I  | nsert transition l | ist                    |                     |                |            |          |          |                         |                  |            |
|------------------------------|-----------------------------------------------|---------|----------------|-----------|-----------|-------|--------------------|------------------------|---------------------|----------------|------------|----------|----------|-------------------------|------------------|------------|
|                              | Precursor Name  Precursor Formula             |         |                |           |           | No em | ors                |                        |                     |                |            |          |          |                         |                  |            |
| A 1 11 10 10 10 1            | Precursor Adduct                              |         |                |           | ×         |       |                    |                        |                     |                |            |          |          |                         |                  |            |
| insert transition list       | Precursor m/z                                 |         |                |           | X         |       |                    |                        |                     |                |            |          |          |                         |                  |            |
| Vo errors                    | Precursor Charge                              |         |                |           |           | Trans | ition List         |                        |                     |                |            |          |          |                         |                  |            |
|                              | Product Name                                  |         |                |           |           |       | Malaarda           | Programmer             | Label               | Descurrent     | Programmer | Deadurat | Deschuet | Cana                    | Explicit         | Explicit   |
| Transition List              | Product Formula                               |         |                |           |           |       | List Name          | Name                   | Type                | m/z            | Charge     | m/z      | Charge   | Voltage                 | Collision        | Retentio   |
|                              | Product Adduct                                |         |                | C-t-t-t   | E-1-1     |       |                    |                        |                     |                |            |          |          |                         | Energy           | lime       |
| Molecule Precursor           | Product m/z                                   | Product | Cone           | Collision | Retention |       | Central Met        | Acetyl-CoA             | light               | 808            | -1         | 408      | -1       | 25                      | 37               |            |
| List Name Name               | Product Charge                                | charge  | voltage        | Energy    | Time      |       | Central Met        | Acetyl-CoA             | heavy               | 831            | -1         | 418      | -1       | 25                      | 37               |            |
| <b>H</b>                     | Explicit Retention Time                       |         |                |           |           |       | Central Met        | a-Ketogluta            | light               | 145            | -1         | 101      | -1       | 25                      | 5                |            |
|                              | Explicit Retention Time Window                |         |                |           |           |       | Central Met        | a-Ketooluta            | heavy               | 150            | -1         | 105      | -1       | 25                      | 5                |            |
|                              | Explicit Collision Energy                     |         |                |           |           |       | Control Mot        | Dihudaaa               | talat               | 100            |            | 70       | 4        | 25                      | 20               |            |
|                              | Note                                          |         |                |           |           |       | Central Met        | Dinydroxya             | light               | 169            | -1         | /9       | -1       | 20                      | 29               |            |
|                              | InChiKey                                      |         |                |           |           |       | Central Met        | Dihydroxya             | heavy               | 172            | -1         | 79       | -1       | 25                      | 29               |            |
|                              | CAS                                           |         |                |           |           |       | Central Met        | Fructose-1,            | light               | 339            | -1         | 241      | -1       | 25                      | 16               |            |
|                              | HMDB                                          |         |                |           |           |       | Central Met        | Fructose-1,            | heavy               | 345            | -1         | 247      | -1       | 25                      | 16               |            |
|                              |                                               |         |                |           |           |       | Central Met        | Hexose-P               | light               | 259            | -1         | 79       | -1       | 25                      | 53               |            |
|                              |                                               |         |                |           |           |       | Control Met        | Have D                 | light.              | 200            |            | 70       | -        | 25                      | 50               |            |
|                              | Cone Voltage                                  |         |                |           |           |       | Central Met        | Hexose-P               | neavy               | 260            | -1         | /9       | -1       | 20                      | 03               |            |
|                              | Explicit Drift Time (msec)                    |         |                |           |           |       | Central Met        | Malate                 | light               | 133            | -1         | 115      | -1       | 25                      | 9                |            |
|                              | Explicit Drift Time High Energy Offset (msec) |         |                |           |           |       | Central Met        | Malate                 | heavy               | 137            | -1         | 119      | -1       | 25                      | 9                |            |
|                              | Collisional Cross Section (sq A)              |         |                |           |           |       | Central Met        | Pentose-P              | light               | 229            | -1         | 79       | -1       | 25                      | 45               |            |
|                              | Explicit Compensation Voltage                 |         |                |           |           |       | Central Met        | Pentose-P              | heavy               | 234            | -1         | 79       | -1       | 25                      | 45               |            |
|                              | Explicit Declustering Potential               |         |                |           |           |       | Central Met        | Phosphoen              | light               | 167            | -1         | 79       | -1       | 25                      | 29               |            |
|                              |                                               |         |                |           |           |       | Cantral Mat        | Dharahaan              |                     | 170            |            | 70       | -        | 25                      | 20               |            |
|                              |                                               |         |                |           |           |       | Central Met        | Phosphoen              | neavy               | 170            | -1         | 19       | -1       | 20                      | 29               |            |
| Peptides     Small molecules | Columns Help                                  | Ch      | eck for Errors | Insert    | Cancel    | OB    | eptides 💿          | Small <u>m</u> olecule | es Col <u>u</u> mne | s <u>H</u> elp |            |          | [        | Check for <u>E</u> rror | s <u>I</u> nsert | <u>C</u> a |